Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 355: 371-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738969

RESUMO

Biofilm-associated diseases such as periodontitis are widespread and challenging to treat which calls for new strategies for their effective management. Probiotics represent a promising approach for targeted treatment of dysbiosis in biofilm and modulation of host immune response. In this interdisciplinary study, nanofibers with two autochthonous Bacillus strains 27.3.Z and 25.2.M were developed. The strains were isolated from the oral microbiota of healthy individuals, and their genomes were sequenced and screened for genes associated with antimicrobial and immunomodulatory activities, virulence factors, and transferability of resistance to antibiotics. Spores of two Bacillus strains were incorporated individually or in combination into hydrophilic poly(ethylene oxide) (PEO) and composite PEO/alginate nanofibers. The nanofiber mats were characterised by a high loading of viable spores (> 7 log CFU/mg) and they maintained viability during electrospinning and 6 months of storage at room temperature. Spores were rapidly released from PEO nanofibers, while presence of alginate in the nanofibers prolonged their release. All formulations exhibited swelling, followed by transformation of the nanofiber mat into a hydrogel and polymer erosion mediating spore release kinetics. The investigated Bacillus strains released metabolites, which were not cytotoxic to peripheral blood mononuclear cells (PBMCs) in vitro. Moreover, their metabolites exhibited antibacterial activity against two periodontopathogens, an antiproliferative effect on PBMCs, and inhibition of PBMC expression of proinflammatory cytokines. In summary, the developed nanofiber-based delivery system represents a promising therapeutic approach to combat biofilm-associated disease on two fronts, namely via modulation of the local microbiota with probiotic bacteria and host immune response with their metabolites.


Assuntos
Bacillus , Nanofibras , Humanos , Leucócitos Mononucleares , Bacillus/genética , Antibacterianos/farmacologia , Polietilenoglicóis , Alginatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...